A primary progression for programming: Key concepts, skills and approaches to programming

	[image:]Computational Thinking Skills For Every Lesson
Computational thinking is about looking at a problem in a way in which a computer can help us solve it. It is defined as the process of formulating and solving problems by breaking them down into simple steps.
This is a twostep process:

First, we think about the steps needed to solve a problem (algorithm). Then, we use our technical skills to get the computer working on the problem (coding).

Computational thinking is NOT thinking about computers or like computer. https://www.youtube.com/watch?v=qbnTZCj0ugI

	[image: reasoning Icon 4776973]LOGICAL REASONING
Predicting and analysing

If you set up two computers in the same way, give them the same instructions (the program) and the same input, you can pretty much guarantee the same output. This means that they are predictable. Because of this we can use logical reasoning to work out why something happens. Part of logical reasoning is the ability to use existing knowledge to make reliable predictions about future behaviour of a system.

	[image:]PATTERN SPOTTING
Spotting and using similarities

Patterns are everywhere, for example, we use weather patterns to create weather forecasts.
By identifying patterns we can make predictions, create rules and solve more general problems.
Children need to be able to identify repeating patterns in a list of commands to understand how this could be made more efficient using a repeat loop.

	[image: decomposition Icon 204135]DECOMPOSITION
Breaking down into parts

The process of breaking down a problem into smaller manageable parts is known as decomposition. Decomposition helps us solve complex problems and manage large projects so they are less daunting and much easier to take on.

	[image: debugging Icon 4446679]DEBUGGING
Finding and fixing errors

Errors in algorithms and code are called ‘bugs’, and the process of finding and fixing these is called ‘debugging’. Getting pupils to take responsibility for thinking through their algorithms and code, to identify and fix errors is an important part of learning to think and work like a programmer.

1. Predict what should happen.
2. Test -find out -exactly what happens when a program is run
3. Work out where something has gone wrong.
4. Fix it.

	[image: evaluating Icon 5484792]EVALUATING
Making judgements

Evaluation is about making judgements, in an objective and systematic way where possible.
Children need to evaluate the effectiveness of their programs in solving a specific task. Pupils should be encouraged to reflect on the quality of the work that they produce – is it fit for purpose?
	[image: idea Icon 5838327]TINKERING

We want to develop in children a willingness to experiment and explore a new app or new software. Children should be encouraged to ‘play’ with a new piece of software, sharing what they discover about it to one another, rather than always coming to the teacher for the answers. Pupils can explore how to use others’ code as a starting point for their own programming projects. Tinkering should help develop independence and perseverance when working with technology.

	
	Reception
	Year 1/2 (on a two-year cycle)
	Year 3/4 (on a two-year cycle)
	Year 5/6 (on a two-year cycle)

	On screen code
	
	[image: Bee-Bot - Izinhlelo zokusebenza ku-Google Play]
Beebot app
	[image: Scratch Jr Programming – Damien Kee]
	[image: Tynker - Crunchbase Company Profile & Funding]
	[image: Tynker - Crunchbase Company Profile & Funding]
	[image: Scratch Team - YouTube]
	

	Physical/applied coding
	[image: Bee-Bots in the Early Childhood Classroom • TechNotes Blog]
Beebots
	[image: Bee-Bots in the Early Childhood Classroom • TechNotes Blog]
Beebots
	
	
	[image:]
	
	[image:]
Microbits

	
	FS
	Year 1
	Year 2
	Year 3
	Year 4
	Year 5
	Year 6

	SEQUENCING SKILLS
	Sequence forwards and turns e.g. with Beebot
[image: IMG_2795]

Predict the outcome of a set of instructions and test the results.

Use symbols to represent an instruction e.g. ↑→ for forward and turn.

Know how to clear the code

Decompose by breaking the code down into chunks (1 step at a time)
1)[image:] (clear)
2) [image:] (clear)
3) [image:] (clear)
4) [image:](clear
	Sequence commands of forwards, back, left, right using arrow blocks .Know that the order of instructions is important.

Write a sequence for others to follow.

Decompose by breaking the sequence into chunks.

Predict the outcome of a set of instructions and test the results.

Understand that a sequence of instructions needs to be clear, precise and unambiguous.

Know how to clear the code.

	Sequence commands including forwards, back and turns more efficiently using blocks.

Understand that some steps in a sequence can be reordered but still achieve the same outcome (flexible sequence).

Understand that the order in which instructions are given will make a difference to the outcome.

Understand that the direction and amount of turn is relative to the position of object – on screen or in real life – that is being moved.

	Sequence instructions in the correct order with increasing numbers of commands.

Understand that a sequence of instructions in computing is called an Algorithm and that the instructions for a computer to follow is a program.

Use decomposition to break the sequence in to manageable steps.

Understand how to approach debugging a program or algorithm.

	Sequence instructions in the correct order to create an animation sequence, draw a shape or solve a problem.

Understand that a sequence of instructions in computing is called an Algorithm and that the instructions for a computer to follow is a program.

Amount of turn in an program to be given as a number of degrees.

Be able to assess success of given instructions and identify and correct any errors that occur.

Be able to evaluate the effectiveness of an algorithm written by their peers in class.

	Describe what commands, functions, debugging and sequences are.

To read code in Swift Code blocks
· Repeat loops
· Event handling
· Selection

Be able to assess success of given instructions and identify and correct any errors that occur.

	To sequence an algorithm using written Swift Code.

To read and write Swift code using:
· Repeat loops
· Functions
· Event handling
· Selection
· Variables

Be able to evaluate the effectiveness of an algorithm written by their peers in class.

	REPEAT LOOPS
(iteration)
	
	
	
Loop a set of commands by a given amount.

Use a number to specify movement rather than repeated commands (e.g. in Scratch Jnr enter forward 4 rather than ↑↑↑↑)

	 Understand informal notation for showing a move is repeated.
E.G
[→] x 3 = move right 3 times

	Understand what simple loops and repeats are and how they can make a program more efficient.

Use count controlled repeat loops.

Pattern spotting – be able to identify which commands need to be repeats and how many times to achieve a desire end.
	Describe what for loops are.

Use the instruction repeat until …
[image:]

Read, write and debug nested loops (loops within a loop)
e.g. creating an algorithm to draw a square, then put this algorithm inside another loop to create a repeated pattern.
[image:]

	To read and write loops.

Use a variable and operators (the green blocks in Scratch) within a loop to govern termination:
[image:]

	EVENT HANDLING SKILLS
	Know that pressing Go will make the robot move.
[image: IMG_2795]

	Understand that an event is an action that causes something to happen.

Sequence an event in words and symbols.

Know that when a key (e.g. space bar) is pressed, the sprite/character will move.

	Express an event in words and symbols.

Control a character in a game or animation where clicking make something happen.
	Be able to create an animation or game using an existing template or scaffold.
	Be able to use a range of inputs to start an event or control a character e.g., space bar, mouse click, ipad press.

Parallelism – Allow more than one event to happen at the same time e.g. having more than one set of blocks or instructions running at the same time.

	In Scratch use a broadcast to co-ordinate events in a program with more than one sprite(one event causes another to happen eg. Game over).
[image:]

	

	CONDITIONAL STATEMENTS SKILLS
	
	Understand that we can make actions occur only ​ under certain conditions.

Use IF statements in everyday life and in coding
	Understand conditional statements as a way of ​ handling different situations (using If, Then, Else commands)

[image:]
On Hopscotch, there are ‘Whens’ for events that happen on your iPad
eg
WHEN the iPad is shaken, play a pop sound.
WHEN the up arrow is pressed, make the character jump.
	Describe what Conditionals are.

Use ‘if, then, else’ statements
 e.g. in a quiz: if answer correct…

[image:]
	Describe what Conditionals are.

Use selection to govern different events using the ‘if / else’
Eg. Microbit 8 ball

[image:]

	VARIABLES SKILLS
	
	Understand variables as a way of working with changing values.

[image:]

	Describe and understand what variables are and how to use them.

Eg. Use a speed variable to control fairground ride speed up and down.
[image:]

	TINKERING OPPORTUNITIES
	Control a Bee Bot on a floor grid

Control Coji with Emojis

Use Dot and Dash with Go and Path apps
	Control a Bee Bot on a floor grid

Use Scratch JR app
	Control a Bee Bot with Blue-Bot app

	Use Dash robots with Blockly app

Use Hopscotch App
	Use Dash robots with Blockly app

Use Sphero with Sphero Edu app
	Use Lego coding resources

Use Sphero with Sphero Edu app
	Use olly robots

Use Sphero with Swift Playgrounds app

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.jpeg

image12.png

image13.png

image14.png

image15.jpeg

image16.png
(+]+]5

image17.png

image18.png
Nested Loops

image19.png
15:44 Wed 23 Feb

ooe = 23%0)
El)] < AA cloud.edscratchapp.com & © \'1‘, —+ 23
& ScholarP Quick games... Policy, Orga... Scouts Scouts Be able to d... Online Scout... EdScratch
Untitled Program » Program Edison
@ Drive ® Data @ sensing
@ LEDs @ Events @ Operators
@ sound @ control @ Comment

|

backwards until atspeed 5 v

turn obstacle detection beam on v

v leftuntil tspeed 5 v
D L= repeatuntil obstacle detected anywhere v

spin v right until atspeed 5w setleftmotorto forwards v atspeed 5 v

J

set both motors to drive forwards v atspeed 5 v

0)®

setright motorto forwards v atspeed 5 v

setleft motorto forwards v atspeed 5 v

stop both motors v

A The 'setleft motor' block will only turn the left motor on. Make sure there are additional blocks used in the program to control the left motor's duration.

image20.png

image21.png

image22.jpeg
(CONDITIONALS

Liigles

When < When or

image23.png

image24.png
e [~ i v @) = @)

image25.png

image26.png
on start

=5 o) e)

forever

turn motor 1 v forward v at speed speed v

